Каждый более-менее опытный автомобилист непременно знает, что по типу питания автомобили бывают работающими на газе, бензине и дизельном топливе. Если с первой системой всё относительно просто – газовое горючее из баллона отправляется прямо на форсунки и впрыскивается в мотор, то вот с бензиновой и дизельной системами питания дела обстоять заметно сложней. Учитывая высокую актуальность их рассмотрения, наш ресурс решил посвятить данной теме полноценную статью. В представленном ниже материале каждый желающий сможет найти информацию о том, как устроены и работают системы питания дизельных и бензиновых агрегатов. Интересно? Тогда обязательно дочитайте всё до конца.
Эволюция устройства
Количество машин растет с каждым годом, выбросов в атмосферу, становится все больше и больше. Поэтому инженеры крупных концернов бьются за экологию выбросов, приминаются такие системы как ЕВРО, сейчас у нас в России они уже дошли до «ЕВРО 5», в Европе это уже «ЕВРО 6», а скоро должна появиться и «ЕВРО 7». Каждый повышающий уровень, предъявляет строгие требования многим узлам, а в частности системе подачи топлива, если бы таких требований не было, то вполне возможно — что мы бы катались еще на «карбюраторах», или скажем на «моно-впрыске». В конструкции наших авто, не было бы таких деталей как катализатор. Но экология есть экология, и в целом я поддерживаю производителей, если честно — то я вообще за электромобили или пока за гибриды. Все же жить на грязной планете не совсем хорошо! НУ да ладно, это лирическое отступление — а теперь по существу.
Если отследить эволюцию систем подачи топлива, а я сегодня говорю именно про бензиновые варианты (про дизель будет позже). То можно определить всего пять основных конструкций, по нарастанию. ИТАК:
- Карбюратор
- Моно-впрыск (или центральный)
- Распределенный впрыск
- Непосредственный впрыск
- Комбинированная система
Как вы понимаете, самым первым был карбюратор (очень не экологичный, стандарт ЕВРО1), сейчас самым прогрессивным типом является непосредственный впрыск (самая, на данный момент экологичная ЕВРО5 – ЕВРО6). Давайте разберем подробнее каждую конструкцию, наверное, многие ждут.
Карбюратор
Самая первая – простая конструкция подачи топлива. Здесь все очень просто как «три копейки». На впускной коллектор вешался сверху карбюратор, который посредством механического бензонасоса и захвата воздуха через воздушный фильтр, смешивал топливную смесь и подавал ее, один сразу во все цилиндры. Это своего рода моно-впрыск, только механический, применение электроники тут на низком уровне, первые конструкции обходились вообще без нее.
Если говорить о плюсах, то это – простая конструкция (наверное, каждый мог отремонтировать, заменить «поплавки», «иглы» и «жиклеры»), низкая стоимость ремонта, «относительная» надежность.
Минусами такой системы, можно назвать – низкую экологию, постоянные переливы или недоливы (если с утра не запустили с первого раза мотор, то могло просто «закидать» свечи), механические регулировки при холодном пуске (нужно были играться с подсосом), постоянная вонь бензина как в салоне, так и снаружи.
В общем как бы кто не хвалил эту чудо–конструкцию, она безнадежно устарела и ушла из автомобилестроения – да и туда ей дорога. Если честно ребят карбюратор уже отжил свое, все его модернизации оказались тупиковой веткой развития ДВС (двигателя внутреннего сгорания), он не способствует мощности двигателя (ведь от впрыска также многое зависит)! И я не понимаю тех людей, которые до сих пор голосуют за такую конструкцию, говоря такие слова – «а я вот в лес поеду он у меня сломается я его сделаю! А ты со своим инжектором куда?». Я редко езжу в лес, да и инжектора сейчас достаточно прочные, даже на УАЗ их ставят, ходят многие тысячи километров, причем сразу не подыхают! УХ, ладно, если хотите поспорить, милости просим в статью карбюратор или инжектор, там в комментариях просто битва идет, а мы продолжаем.
Датчик уровня горючего
Располагается он на модуле насоса. По своей конструкции датчик уровня топлива представляет небольшую систему, состоящую из поплавка и механизма переменного сопротивления с нейлоновым контактом. В зависимости от количества содержимого в баке топлива, сопротивление элемента меняется, что фиксирует стрелка на панели приборов в салоне.
Следует отметить, что датчик бензина не подвергается негативному воздействию некачественных топливных присадок и не ломается при частых перепадах температур и давлении внутри бака.
Моно-впрыск
Если хотите то это попытка – сделать карбюратор электронным. Такая система подачи топлива, практически не отличалась по своим функциям от карбюратора, только была электронной. Конечно же я утрирую, и отличия были и причем существенные, но исполнение было схожее.
НА впускной коллектор, вешалась устройство моно-впрыска, если же опять утрировать — то это была одна форсунка, которая смешивала воздух и топливо и подавала ТВС (топливно-воздушную смесь) в цилиндры. Для своего времени это было прорывом. Эта форсунка была электронной, также появляются и первые топливные насосы, которые погружались и в бак, и устанавливались в саму систему.
Положительные моменты – простая конструкция, надежная, дешевая в ремонте, снизился расход (если сравнивать с карбюратором), немного увеличилась мощность (из-за нагнетания топлива).
Отрицательные моменты – низкая экология, большой расход топлива (если сравнивать с более совершенными системами).
Моно-впрыск, также ушел в историю, хотя еще сейчас на каком-нибудь ГОЛЬФЕ2, можно его увидеть, именно на нем такая система считалась эталонной.
Принцип и общая схема работы топливной системы
Последовательность работы топливной системы дизельного двигателя следующая. Солярка закачивается из топливного бака при помощи топливоподкачивающего насоса (шестерёнчатого, либо помпового типа), а после фильтрации она подаётся топливным насосом высокого давления (ТНВД) на форсунки. Топливо после закачки из бака проходит сначала через фильтр грубой очистки, избавляясь от крупных включений. Далее, уже непосредственно перед топливным насосом высокого давления – сквозь фильтр тонкой очистки. В связке с ТНВД работают форсунки, через которые солярка в распылённом состоянии и впрыскивается в цилиндры.
Схему топливной системы дизельного двигателя двигателя можно не условно, а вполне чётко разделить на два отсека: высокого давления и низкого. На участке низкого давления осуществляется предварительная подготовка, фильтрация топливной смеси, перед его отправкой в отдел высокого давления. Отсек высокого давления, в свою очередь, дорабатывает смесь до конца и переводит её в рабочую камеру.
Распределенный впрыск
Эта система сейчас применяется довольно часто, она стоит на многих как бюджетных авто, так и премиум класса. Это более совершенная система, которая подает топливо непосредственно к каждому из цилиндров, хотя не встраивается в них!
Теперь более подробно:
- На каждый цилиндр, идет своя отдельная топливная форсунка (или инжектор), то есть если у вас 4 цилиндра, то их также будет 4 штуки, если скажем 8 цилиндров, то их также будет 8 штук. Они если можно так выразиться, находятся в конце впускного коллектора, но в двигатель не заходят! Это важно!
- Эти «инжектора» собираются в специальную топливную рейку, куда они устанавливаются, то есть это своего рода топливопровод.
- Топливо нагнетается в эту систему специальным насосом, который устанавливается зачастую в баке автомобиля.
- Воздух засасывается через дроссельную заслонку, доходит до «инжектора», который впрыскивает топливо, эта смесь смешивается — этим процессом руководит ЭБУ. Он точно видит, сколько воздуха поступило и сколько нужно подать топлива, рассчитывается специальный алгоритм. И после засасывается в цилиндры (через впускной тракт и клапан) где уже и воспламеняется.
Смешение топлива происходит во впускном коллекторе, где воздух и бензин смешиваются, а после подаются в цилиндры двигателя.
Эта система намного совершеннее (чем первые две), сейчас достаточно прочна, может ходить без особых проблем по 100 – 120 000 километров, только нужно дроссель и форсунки чистить, желательно каждые 50 – 75 000 км.
Плюсы: — экология на высоком уровне, экономия топлива также выше (по сравнению с первыми двумя системами, на 10 – 15%), практически нет переливов (ведь все управляется ЭБУ), увеличенная мощность двигателя из-за правильной подачи топлива, работа двигателя более плавная, из-за совершенствования электроники ходят достаточно долго.
Минусы: — сложная конструкция, которая всецело зависит от электроники; дорогой ремонт; среднему автолюбителю нельзя сделать своими руками, а иногда даже выявить поломку, нужны специальные сканеры и оборудование.
Однако сейчас такие системы широко распространены, еще раз подчеркну – НАДЕЖНОСТЬ НА ВЫСОКОМ УРОВНЕ.
Фильтры грубой и тонкой очистки топлива
Очистка топлива от механических примесей и воды происходит в фильтрах грубой 9 и тонкой 3 очистки. Фильтр грубой очистки, устанавливаемый перед основным топливоподкачивающим насосом 8, задерживает частицы размерами 20… 50 мкм, на долю которых приходится 80…90 % массы всех примесей. Фильтр тонкой очистки, помещаемый между основным топливоподкачивающим насосом и ТНВД, задерживает примеси размерами 2…20 мкм.
В настоящее время в силовых установках с дизелями применяют следующие типы фильтров грубой очистки:
- сетчатые
- ленточно-щелевые
- пластинчато-щелевые
У сетчатых фильтров фильтрующим элементом является металлическая сетка. Из нее можно образовывать концентрические цилиндры, через стенки которых продавливается топливо, или дискообразные секции, нанизанные на центральную трубу с отверстиями в стенке, соединенную с выходным трубопроводом.
В ленточно-щелевом фильтре фильтрующим элементом служит гофрированный стакан с намотанной на него профильной лентой. Через щели между витками ленты, образованными за счет ее выступов, топливо из пространства, окружающего фильтрующий элемент, попадает во впадины между гофрированным стаканом и лентой, а затем — в полость между дном и крышкой стакана, откуда удаляется через выпускной трубопровод.
Фильтрующий элемент пластинчато-щелевого фильтра представляет собой полый цилиндр, составленный из одинаковых тонких кольцевых дисков с отгибными выступами. За счет этих выступов между дисками образуются зазоры. Топливо поступает к наружным и внутренним поверхностям цилиндра и, проходя через щели между дисками, очищается. Очищенное топливо через торцевые отверстия в дисках направляется в верхнюю часть фильтра к выходному отверстию.
Очень часто фильтр грубой очистки совмещают с отстойником для воды, находящейся в дизельном топливе. В этом случае необходимо периодически отворачивать пробку отстойника для удаления из него скопившейся воды.
В фильтрах тонкой очистки в качестве фильтрующих элементов обычно используют картонные элементы типа «многолучевая звезда» или пакеты из картонных и фетровых дисков. Реже применяют каркасы с адсорбирующей механические примеси набивкой (например, минеральной ватой), каркасы с тканевой или нитчатой обмоткой и др.
В процессе эксплуатации ТС топливные фильтры загрязняются, что приводит к увеличению их сопротивления. Чтобы подача топлива к ТНВД не прекратилась, необходимо фильтр грубой очистки периодически промывать, а фильтрующий элемент фильтра тонкой очистки заменять новым.
Непосредственный впрыск
На данный период времени, считается передовой (даже если сравнить ее с распределенной системой подачи топлива), то она будет еще экологичнее, экономичнее (до 5%) и придаст большую мощность двигателю (те же 5 – 7 %). Они очень схожи по своему строению с распределенным впрыском, однако различия есть и они также существенные.
Все дело в том, что в непосредственной конструкции, форсунки устанавливаются прямо в цилиндры двигателя, а не во впускной коллектор. Что дает дополнительные преимущества. Смешение топлива происходит в цилиндрах, а не во впуском коллекторе.
Принцип работы такой:
- Форсунка установлена в цилиндре двигателя, топливо подается именно в цилиндр
- Воздух засасывается также через дроссельную заслонку, однако смешение ТВС происходит непосредственно в цилиндре.
- В конструкции есть также и топливная рейка и насос, который стоит в баке.
Плюсы: — Из-за того что форсунки (инжектора) находятся в цилиндрах выхлоп становится еще более чистый, также повышается и мощность из-за того что вся смесь в цилиндрах (в распределенном впрыске может немного остаться в коллекторе), улучшается эластичность работы.
Минусы: — форсунки чаще выходят из строя или требуют чистки, потому как находятся в агрессивной среде, топливо должно быть высокого уровня и качества, иначе форсунки просто «закоксуются», ремонт такой системы дороже даже распределенного впрыска (иногда до двух раз).
Особенности инжектора
Схема топливной системы («Мерседес е200» в том числе) инжекторного типа имеет принципиальное отличие от карбюраторного аналога:
- Во-первых, топливо из бака в ней подается на рампу, к которой подсоединены форсунки-распылители.
- Во-вторых, воздух в камеру сгорания двигателя подается через специальный дроссельный узел.
- В-третьих, уровень давления, создаваемый насосом в системе, в разы больше того, который создает карбюраторный механизм. Это явление объясняется необходимостью обеспечения быстрого впрыска горючего форсункой в камеру сгорания.
Но не только этим отличается от карбюратора инжекторная топливная система. «Шевроле Нива» (схема его топливной указана на фото ниже), как и другие современные авто, имеет в своем распоряжении так называемые «электронные мозги», то бишь ЭБУ. Последний отвечает за сбор и обработку информации со всех существующих датчиков в автомобиле.
Так вот, ЭБУ также управляет впрыском бензина. В зависимости от режима работы электроника самостоятельно определяет, какую именно смесь нужно подать в цилиндр – бедную или обогащенную. Но не только этим отличается схема топливной системы («Форд Транзит» CDi в том числе) инжекторного типа. Она может иметь разное количество распылителей. Об этом мы расскажем в следующем разделе.
Комбинированная подача топлива
Как, наверное вы уже догадались — это попытка объединить две системы сразу, а именно: — распределенный и непосредственный впрыск.
На один цилиндр стоит сразу две форсунки (инжектора) — одна находится во впускном коллекторе, другая находится непосредственно в цилиндре, то есть это своего рода объединить две системы и пользоваться плюсами и той и другой.
Однако, как правило, они не нагнетают одновременно топливо, а распределяют нагрузку по режимам эксплуатации:
- Так при небольших скоростях с минимальной нагрузкой, скажем например в городе, в пробках – работает распределенный впрыск
- При больших скоростях и больших оборотах – нагрузках, включается непосредственный впрыск, он «чуть» увеличивает мощность (порядка 5%), экономит топливо и снижает выбросы в окружающую среду.
Положительные моменты комбинированной системы – это совмещение плюсов различных конструкций, достигается наибольшая экономичность и экология выброса.
Отрицательные моменты – еще более сложная конструкция (зачастую две топливные рейки и два насоса), сложный ремонт – диагностика, высокие цены. Вот почему такие системы применяются практически только на авто бизнес — класса.
Предпусковой топливоподкачивающий насос
Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса 70. Ранее были широко распространены насосы плунжерного и диафрагменного (мембранного) типов с ручным приводом. Однако в настоящее время все чаще применяются центробежные крыльчатые насосы с приводом от электродвигателя, питаемого электрической энергией аккумуляторной батареи. Они обеспечивают более быструю прокачку топлива, не требуют затрат мускульной энергии механика-водителя и могут использоваться в качестве аварийных при отказе основного топливоподкачивающего насоса.
Какая из современных систем лучше?
Сейчас большое распространение получили все два устройства подачи топлива – распределенная и непосредственная. Именно между ними нужно выбирать, да и если честно в большинстве случаев у вас не будет другого выбора (если только скажем комбинированная, она же «гибридная», но это редко).
Итак, если разложить две основные системы, лучшими характеристиками обладает – конечно же «непосредственный впрыск», как я уже писал – экономия, мощность, экология, эластичность.
Но, несмотря на все плюсы этой системы, многие тип подачи топлива – ПОЧЕМУ?
Да очень просто – он намного дешевле в производстве, легче и дешевле в обслуживании, долговечнее «чтоли», его инжектора «не запекаются» в камерах сгорания цилиндров, они не так требовательны к качеству топлива (то есть можно лить и 92 бензин), интервал диагностики в 70 — 80 000 км, для простого обывателя это большие плюсы. И вся та экономия, которая дается от непосредственного впрыска – затем сжирается, на более частых диагностиках, более дорогом бензине (желательно не меньше 95), и дорогих ремонтах.
Так что для среднего авто – лучше распределенная система подачи топлива.
Главные составные части топливной системы дизельного двигателя
Итак, помимо топливного бака и магистральных топливопроводов, с которыми всё более или менее ясно, основными составными частями топливной системы дизельного мотора являются: топливоподкачивающий насос, фильтры грубой и тонкой очистки горючего, топливный насос высокого давления (ТНВД) и форсунки.
Топливоподкачивающий насос
Устройство подкачивающего насоса дизельного топлива довольно несложное. Оно представляет собою две находящиеся в постоянном зацеплении шестерни. Когда происходит процесс вращения, зубья этих шестерней выполняют функцию лопастей, создавая и поддерживая ток горючего по направлению к ТНВД. Главным же действующим элементом подкачивающего насоса, который и непосредственно нагнетает топливо, является поршень. Как уже было отмечено, производительность топливоподкачивающего насоса устроена превышающей производительность насоса высокого давления, поэтому и оборудованы специальные топливопроводы для слива излишков обратно в топливный бак.
Топливный насос высокого давления
ТНВД предназначается для подачи топлива к форсункам под давлением, в соответствии со строго определенной программой, в зависимости от заданных режимов работы двигателя и от управляющих действий водителя. По своей сути, современный всережимный ТНВД совмещает в себе функции сложной системы автоматического управления работой двигателя и, в то же время, главного исполнительного механизма, реагирующего на команды шофера.
Благодаря внедрению в производство топливных насосов высокого давления с электронными системами управлением, а также 2-хступенчатого впрыска топлива и оптимизации процесса сгорания, получилось добиться достаточно устойчивой работы дизеля с неразделённой камерой сгорания на оборотах до 4500 в минуту, оптимизировать его экономичность, снизить показатели шума и вибрации.
Далее: по всей длине насоса, во внутренней его полости, расположен вращающийся вал, снабжённый специальными кулачками. Этот вал ТНВД получает энергию вращения от распределительного вала двигателя. Его кулачки при движении воздействуют на толкатели, которые, в свою очередь, и стимулируют нагнетающую работу поршня-плунжера. При своём продвижении вверх этот плунжер создаёт высокое давление топлива внутри цилиндра. Сила этого давления и выталкивает горючее, которое направляется по топливной магистрали к форсункам.
Для сравнения: на участке топливной системы низкого давления, где топливоподкачивающий насос гонит солярку через фильтры к ТНВД, давление составляет 3 атмосферы. А топливный насос высокого давления толкает горючее к форсункам с силой давления до 2000 атмосфер! Это нужно для того, чтобы обеспечить качественные впрыск и распыление топливной смеси в камеры сгорания цилиндров мотора.
Внутри корпуса, или гильзы, топливного насоса высокого давления расположен плунжер, иначе – специальный поршень, обладающий диаметром, значительно меньшим, чем его длина. Это называется плунжерной парой. Её детали притёрты друг к другу таким образом, что зазор не превышает 4-х мкм.
Поскольку работа дизеля в разных режимах и на разных оборотах требует, соответственно, и разного количества горючего, устройство плунжера было немного изменено: по его поверхности «пустили» специальную спиральную выточку, позволяющую менять величину активного хода при помощи механизма поворота плунжеров.
Это сделано было для того, чтобы плунжер мог не только нагнетать топливо под давлением по направлению к форсункам, но и регулировать количество, объём этой подачи. Для этого служит подвижная часть плунжера, которая, в зависимости от изменения параметров, может открывать или закрывать канавки внутри него. Данная подвижная часть соединена с педалью «газа» в кабине механизатора.
В зависимости от того, каков угол поворота плунжера, устанавливается и соответствующая степень открытия каналов прохождения топлива, и его непосредственное количество, подаваемое на форсунки.
Форсунки
Другой важнейший элемент топливной системы дизельного двигателя – это форсунки, на каждом из его цилиндров. Они, совместно с ТНВД, обеспечивают подачу строго дозированного количества топлива в камеры сгорания. Регулировки давления открытия форсунки формируют рабочее давление в топливной системе, а типы распылителей определяют форму факела топлива, которая имеет важное значение для активизации процессов самовоспламенения и сгорания. В современных дизельных моторах обычно применяются форсунки двух типов: со шрифтовым, или с многодырчатым распределителем.
Форсункам на двигателе приходится работать в очень тяжёлых условиях: игла распылителя совершает возвратно/поступательные движения с частотою в половину меньшей, чем обороты двигателя, и при этом распылитель всё время непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из специальных, высоко-жаропрочных сплавов, делается с особой точностью и является прецизионным элементом.
Распределитель форсунок выполняет функцию равномерного поступления топлива в камеры сгорания и наиболее эффективное его воспламенение. Чем более мелко распыляется топливная смесь, тем устойчивее, в целом, получается работа силового агрегата. Не менее важный фактор – это равномерность распыления горючего, во всех возможных направлениях. Современные форсунки производятся с многочисленными мельчайшими отверстиями, как раз для того, чтобы распыление топливной смеси происходило во всех направлениях, и в равномерном режиме.
Кроме того, работа форсунок поддерживает следующие процессы, с которыми напрямую связана эффективная работа двигателя:
- Обеспечение высокого давления и температуры в камерах сгорания;
- Смешивание солярки с воздухом в оптимальном объёме;
- Соответствие угла опережения впрыска частоте вращения коленчатого вала мотора.
Форсунки бывают с механическим, либо с электромагнитным управлением. В обычных форсунках открытие отверстия распылителя связано с тем давлением, которое имеется на тот момент в топливной магистрали. Отверстие форсунки перекрывается иглой, соединённой со специальным поршнем вверху форсунки. Пока давления нет, игла перекрывает выход топлива через отверстие распылителя. Когда происходит поступление топлива под давлением, поршень перемещается вверх и тянет за собою иглу. Отверстие раскрывается, и распыление начинается.
В современных дизельных двигателях используются форсунки с электромагнитной системой управления. Их работа регулируется уже не по механическому принципу, а с помощью электромагнитных импульсов, поступающих от блока управления. Каждая из форсунок снабжена электромагнитным клапаном, открывающим либо закрывающим распыление топлива.
На эти электромагнитные элементы форсунок поступают сигналы от электронного бока управления (ЭБУ), который, в соответствии с информацией от целого ряда датчиков, подаёт ту или иную команду на установку нужной степени распыления.
Присадки и их применение
В заключении хочу немного рассказать о присадках для промывки инжекторов, в каких системах их стоит применять, а в каких нет?
Во-первых, применение любых присадок для чистки инжекторов, будь то это распределенный или непосредственный впрыск, нужно делать на свой страх и риск. Много подделок, много обмана можете еще хуже «засрать» форсунку, нежели ее прочистить.
Во-вторых, распределенный впрыск менее подвержен агрессивной среде, ибо его нахождение впускной коллектор, там нет высоких температур, а поэтому такие форсунки могут ходить по 70 – 80 000 без чистки. К ним можно добавить присадки в топливо, которые (если работают) легко «смоют» налет на них. ЗДЕСЬ ЭТО ОБОСНОВАНО!
В-третьих, непосредственный впрыск, как я уже писал — что форсунки находятся в агрессивной среде! На них просто запекается всевозможный налет (который оседает и в цилиндрах и на свечах). Смыть его сложно, причем с применением, каких-то присадок – поэтому желательно их снять и прочистить на СТО, на стенде, пусть вам продемонстрируют их работоспособность. ДА это дороже, но я же вам указывал, что такая система подачи топлива дороже в эксплуатации. Я БЫ НЕ СТАЛ ЛИТЬ ПРИСАДКИ ДЛЯ ИХ ЧИСТКИ.
Вот как бы и все, сейчас подробная видеоверсия статьи, для тех, кто не понял, постарался снять просто.
Читайте наш АВТОБЛОГ, будет еще много полезных статей и видео.
Похожие новости
- Двигатель без клапанных пружин. Реально революция в моторостроен…
- КПД двигателя внутреннего сгорания. Сколько приблизительно равен…
- Царапины на кузове автомобиля