Что такое АЦП: назначение, схемы, характеристики, описание и назначение

Решил проверить АЦП на ДМРВ. пролная статья тут. mayvaz.ucoz.ru/index/datc…hoda_vazdukhaju_dmvr/0-23 1. Включаем тестер в режим измерения постоянного напряжения, и выставляем предел измерения 2 Вольта. Находим в разъёме датчика провод жёлтого-выход (ближний по расположению к лобовому стеклу) и зелёного-масса (третий с того же края). Это нужные нам выводы датчика. В системах разных лет цвета могут меняться(! да и разъём может быть уже меняным), неизменным остаётся только расположение выводов. Для оценки состояния ДМРВ, необходимо измерить напряжение между указанными выводами при включенном зажигании, но НЕ заводя двигатель! Щупы тестера по диаметру позволяют внедриться сквозь резиновые уплотнители разъёма, вдоль указанных проводков, не нарушая их изоляции, добираясь до самих контактов и не причинять вреда самим уплотнителям. Полезно будет смазкой ВД пшикнуть на щупы. Включаем зажигание, подключаем тестер, снимаем показания. Эти же показаниия можно снять и без тестера с табло бортового компьютера, у кого он есть. В группе параметров «напряжения с датчиков». Обозначается Uдмрв=…

2. Оцениваем результаты. Напряжение на выходе исправного датчика в состоянии «из упаковки» 0.996…1.01 Вольта. В процессе эксплуатации оно постепенно меняется, и как правило увеличивается. По увеличению этого напряжения можно вполне уверенно судить о степени «износа» датчика. Попадание напряжения в указанный выше диапазон — лучший результат этой проверки. Дальше возможны варианты: 1.01…1.02 — вполне рабочий датчик, очень неплохо. 1.02…1.03 — тоже приемлимо, но датчик уже не молодой. 1.03…1.04 — большая часть ресурса уже позади, можно планировать скорую замену. 1.04…1.05 — явно уставший датчик, своё он уже отслужил. Если бюджет позволяет, смело меняем. 1.05…и выше — источник проблем, давно пора заменить.

Замерил:

между желтым и минусом АКБ 1,052 В, (видимо массы надо почистить) между желтым и зеленым проводом 1,014 В.(датчик живой)

Правильнее всего массу брать с зеленого провода, т.к. это именно то напряжение, что видит контроллер.

Вот нашел полезную информацию по типовым параметрам. Сделана по сути как заметка для себя.

Для многих начинающих диагностов и простых автолюбителей, которым интересна тема диагностики будет полезна информация о типичных параметрах двигателей. Поскольку наиболее распространенные и простые в ремонте двигатели автомобилей ВАЗ, то и начнем именно с них. На что в первую очередь надо обратить внимание при анализе параметров работы двигателя? 1. Двигатель остановлен. 1.1 Датчики температуры охлаждающей жидкости и воздуха (если есть). Проверяется температура на предмет соответствия показаний реальной температуре двигателя и воздуха. Проверку лучше производить с помощью бесконтактного термометра. К слову сказать, одни из самых надежных в системе впрыска двигателей ВАЗ – это датчики температуры.

1.2 Положение дроссельной заслонки (кроме систем с электронной педалью газа). Педаль газа отпущена – 0%, акселератор нажали – соответственно открытию дроссельной заслонки. Поиграли педалью газа, отпустили – должно также остаться 0%, ацп при этом с дпдз около 0,5В. Если угол открытия прыгает с 0 до 1-2%, то как правило это признак изношенного дпдз. Реже встречается неисправности в проводке датчика. При полностью нажатой педали газа некоторые блоки покажут 100% открытия (такие как январь 5.1 , январь 7.2), а другие как например Bosch MP 7.0 покажут только 75%. Это нормально.

1.3 Канал АЦП ДМРВ в режиме покоя: 0.996/1.016 В — нормально, до 1.035 В еще приемлемо, все что выше уже повод задуматься о замене датчика массового расхода воздуха. Системы впрыска, оснащенные обратной связью по датчику кислорода способны скорректировать до некоторой степени неверные показания ДМРВ, но всему есть предел, поэтому не стоит тянуть с заменой этого датчика, если он уже изношен.

2. Двигатель работает на холостом ходу.

2.1 Обороты холостого хода. Обычно это – 800 – 850 об/мин при полностью прогретом двигателе. Значение количества оборотов на холостом ходу зависят от температуры двигателя и задаются в программе управления двигателем.

2.2 Массовый расход воздуха. Для 8ми клапанных двигателей типичное значение составляет 8-10 кг/ч, для 16ти клапанных – 7 – 9,5 кг/час при полностью прогретом двигателе на холостом ходу. Для ЭБУ М73 эти значения несколько больше в связи с конструктивной особенностью.

2.3 Длительность времени впрыска. Для фазированного впрыска типичное значение составляет 3,3 – 4,1 мсек. Для одновременного – 2,1 – 2,4 мсек. Собственно не так важно само время впрыска, как его коррекция.

Коды АЦП

Параметры кодов АЦП относятся к аналоговым датчикам системы управления:

  • Датчик положения дроссельной заслонки
  • Датчик температуры
  • Датчик массового расхода воздуха
  • Датчик L-зонд
  • Потенциометр СО.

Физически, коды АЦП отражают напряжение, которое выдает датчик. Как правило, эти параметры используются для проверки цепей датчиков. Если возникают коды неисправности, связанные с низким или высоким уровнем сигнала такого датчика, то система управления работает по резервным режимам. При этом значение параметра, относящегося к этому датчику, выбирается либо из аварийной таблицы, либо рассчитывает по заданным формулам, например, температура охлаждающей жидкости при неисправном датчике температуры увеличивается по времени работы двигателя.

Если, при физическом изменении параметра, измеряемого датчиком, код АЦП остается величиной постоянной, то электрическая цепь подключения датчика неработоспособна.

Величины АЦП являются безразмерной величиной, но для пользователя в тестерах-сканерах их приводят к напряжению, которое выдает конкретный датчик.

Поэтому, используя код АЦП, например, с датчика L-зонд можно более наглядно оценивать работу в системе контура обратной связи по поддержанию стехиометрического состава смеси. Если датчик L-зонд неработоспособен, то код АЦП находится в диапазоне 0,4-0,7В.

Значение кода АЦП (выходное напряжение) с датчика положения дросселя может указать нижнюю границу, при котором система определяет ошибку датчика. Положению дроссельной заслонки равному нулю соответствует напряжение с датчика 0.52 В.

При включенном зажигании выходное напряжение с датчика массового расхода (код АЦП) должно равняться 1,00В.

Датчик температуры, датчик положения дроссельной заслонки, датчик массового расхода питаются напряжением 5,00В, которое выдает блок управления. Если блок управления выдает нестабильное напряжение, то показания датчиков будут меняться и поведение системы в этом случае непредсказуемо.

Оптимальная работа автомобильного двигателя зависит от многих параметров и устройств. Для обеспечения нормальной работоспособности моторы ВАЗ оснащаются различными датчиками, предназначенными для выполнения разных функций. Что нужно знать о диагностики и замене контроллеров и каковы параметры датчиков инжекторных двигателей ВАЗ таблица представлена в этой статье.

Позвонил товарищ с этой проблемой. Периодический плохой запуск, не держит обороты пока не проедешь какое-то время, иногда без открытия дросселя вообще не запускается, глохнет при переходе в нейтраль. Я сразу выдал предположение что это либо дмрв, либо он же + датчик скорости. Настал день «диагностики». Подключился, посмотрел на показания ацп дмрв, когда неисправность проявилась и без сомнений приговорил его. Дал товарищу свой запасной дмрв, чтобы окончательно убедиться в неисправности. Он покатался с неделю на нем, сказал что все окнорм, поставил новый и готов мне отдать мой. Сделал ему сбор и инициализацию и он уехал. На следующее утро завестись он не смог без подгазовки, обороты не держит, динамика околонулевая, после непродолжительного движения все более менее приходит в норму, в общем все как и было… Как потом выяснилось с моим дмрв тоже пару раз было такое, но он списал это на что-то другое.. Настал день диагностики, часть 2. Что было проверено(при активной неисправности): 1. Разьем дмрв. +12 есть при зажигании и запуске. +5 есть при зажигании и запуске. Сопротивление на массовом проводе менее 1 Ом. Показания на сигнальном проводе 1.001 — 1.007 в. Показания на сигнальном проводе при отключенном разъеме и включенном зажигании ~5.6 кОм. 2. Показания ацп дмрв на ноге контроллера, 1.001 — 1.007 при включенном зажигании, по диагностике такие же показания. При попытке запуска показания на контроллере ~1.060, по диагностике 0.8хх — 0.9хх. 3. Снял контроллер, снизу платы незначительные следы окисления. Явно конденсат. Почистил от видимых окислений. Изменений никаких. 4. Подкинули мой м73 прошит под один дк компетентным человеком, двигатель у меня такой же. Изменений никаких. 5. Питание и импульсы на форсах присутствуют. 6. Питание и импульсы на мз присутствуют. 7. Сопротивление между массой эбу и кузовом менее 3 Ом при зажигании и попытке запуска. 8. От стартера максимально удалены все жгуты проводов. 9. Дпкв рабочий. При попытке запуска по диагностике видны обороты. 10. Дпрв рабочий. На холостых 4+ мс длительность импульса. 11. Давление топлива проверено органолептическим методом )) 12. Плавание ацп других датчиков отсутствует как при зажигании, так и запуске. 13. Все показания датчиков, когда неисправности нет, более чем в норме. положение рхх, расход воздуха, температура воздуха и ож, желаемый расход воздуха, синусоида и пики показаний дк, параметр нагрузки. Вообще абсолютно все.

Далее я перечислю показания по диагностике, которые у меня вызвали вопросы во время активной неисправности (двигатель прогрет полностью): 1. Температура впускаемого воздуха 67. На улице не более 18, капот открыт. 2. Сигнал единственного дк неадекватен. Рваная синусоида, иногда график залипает вверху, либо внизу. 3. Желаемый расход воздуха под 40 кг/час, при этом мрв 8. Обороты ~1000. Также в этот момент по графику видна синхронность между показаниями желаемого расхода и позицией рхх, график рхх 100-140 в этот момент. 4. Во время неисправности, если сразу после запуска отпустить педаль, мрв падает до 6 кг/час и двигатель разумеется глохнет. Также присутствует устойчивый запал бенза из выхлопной.

При всем этом, следующий запуск может пройти идеально и абсолютно все показания будут в норме. Тут наши полномочия все (с).

Назначение и расшифровка аббревиатуры

Расходомеры, они же волюметры или ДМРВ (не путать с ДМРТ и ДВРМ), расшифровываются как датчики массового расхода воздуха, устанавливаются в автомобилях на дизеле или бензиновых ДВС. Место расположения данного датчика найти несложно, поскольку он контролирует подачу воздуха, то и искать его следует в соответствующей системе, а именно, после воздушного фильтра, на пути к дроссельной заслонке (ДЗ).


Место установки ДМРВ на Газель 405

Подключение устройства осуществляется к блоку управления ДВС. В тех случаях, когда ДМРВ находится в неисправном состоянии или отсутствует, грубый расчет может быть произведен исходя из положения ДЗ. Но при таком способе измерения нельзя обеспечить высокую точность, что незамедлительно приведет к перерасходу топлива. Это еще раз указывает на ключевую роль расходометра при расчете подаваемой через форсунки топливной массы.

Помимо информации с ДМРВ, блок управления также обрабатывает данные, поступающие со следующих устройств: ДРВ (датчик распределительного вала), ДД (измеритель детонации), ДЗ, датчик температуры системы охлаждения, измеритель кислотности (лямбда зонд) и т.д.

Это интересно: Что означает g12 антифриз

Принцип работы АЦП

Итак, мы узнали, что АЦП преобразует аналоговый сигнал в цифровой. Но как он это делает?

Я не буду рассказывать, как это происходит на уровне электронных схем – это тема для электронщиков. Разработчикам же устройств на микроконтроллерах (особенно начинающим), вполне достаточно знать общий принцип работы АЦП, чтобы понимать, как будет работать создаваемое ими устройство и достаточна ли будет точность измеряемого аналогового значения.

Итак, первым делом АЦП должен преобразовать аналоговый сигнал в дискретный. Для чего это нужно?

Как вы уже знаете, аналоговый сигнал – это непрерывный сигнал. То есть такой сигнал может принимать бесконечное количество значений, и ни у какого процессора не хватит “мозгов” для обработки всех этих значений.

Поэтому первая задача АЦП – это разбить измеряемый диапазон на какое-то конечное количество значений.

Например, мы хотим измерить напряжение в диапазоне от 0 до 9 В. Допустим, нам достаточно точности в 1В. Тогда мы разбиваем этот диапазон на 10 значений и получаем, что каждому значению напряжения соответствует такое же число. То есть 0 – это 0 В, 5 – 5 В и т.п.

А как же, например, напряжение 4,3 В? Да никак. Оно просто округляется, и АЦП преобразует его в число 4. Этот простой пример отображён на рисунке ниже.

Возникает вопрос – а как измерять большие напряжения? Или как повысить точность (например, если мы хотим измерять напряжение с точностью до 0,1В)?

Расскажу и об этом, но сначала о разрядности АЦП.

Проверка и ремонт в домашних условиях

Существует восемь способов самостоятельной проверки амплитудных и частотных ДМРВ.

Способ №1 – отключение расходомера воздуха

Способ состоит в отключении датчика от топливной системы машины и проверки работоспособности системы без него. Для этого нужно отключить прибор от разъема и завести мотор. Без ДМРВ контроллер получает сигнал переходить в аварийный режим работы. Он готовит воздушно-топливную смесь лишь исходя из положения дроссельной заслонки. Если машина движется «резвее», не глохнет, значит, прибор неисправен и требуется его ремонт или замена.

Способ №2 – перепрошивка электронного блока управления

Если штатную прошивку изменили, то неизвестно, какая реакция контроллера в ней прошита на случай аварийной ситуации. В этом случае под упор дроссельной заслонки нужно попытаться засунуть пластину толщиной 1мм. Обороты должны увеличиться. Теперь нужно выдернуть фишку с расходомера воздуха. Если силовой агрегат будет продолжать работать, то причина неисправности — прошивка.

Способ №3 – установка исправного датчика

Установить заведомо исправную деталь и завести двигатель. Если после замены он стал работать лучше, мотор не глохнет, то требуется замена или ремонт устройства.

Способ №4 – визуальный осмотр

Для этого нужно крестовой отверткой открутить хомут, удерживающей гофру воздухосборника. Затем нужно отсоединить гофру и осмотреть внутренние поверхности гофры воздухосборника и датчика.


Осмотр гофры воздуховода

На них не должно быть следов масла и конденсата, поверхности должны быть в сухом и чистом состоянии. Если не следить за воздушным фильтром и редко его менять, то грязь может попасть на чувствительный элемент датчика и стать причиной его поломки. Это чаще всего встречающаяся неисправность. Следы масла могут появиться в расходомере при повышенном уровне масла в картере, а также если забит маслоотбойник вентиляционной системы картера. При необходимости нужно почистить поверхности с помощью специальных чистящих средств.

Способ №5 – проверка ДМРВ мультиметром

Для этого нужно включить тестер в режим, при котором проверяется постоянное напряжение. Предельное значение для измерений следует выставить 2В.


Схема работы ДМРВ

  • Провод желтого цвета расположен ближе к лобовому стеклу. Он служит входом для сигнала с расходомера.
  • Бело-серый провод – выход напряжения датчиков.
  • Черно-розовый провод ведет к главному реле.
  • Провод зеленого цвета служит для заземления датчиков, то есть идет на массу.

Провода могут иметь разные цвета, но их расположение неизменно. Для проверки нужно включить зажигание, но не заводить машину. Щуп красного цвета от мультиметра нужно подключить к желтому проводу, а черный нужно присоединить на массу, то есть к зеленому проводу. Измеряем напряжение между этими двумя выходами. Щупы мультиметра дают возможность присоединиться, не нарушая изоляции проводов.

На новом устройстве напряжение на выходе находится в пределах от 0,996 до 1,01 В.

Во время эксплуатации это напряжение постепенно увеличивается и по его значению можно судить об износе расходомера:

  • при хорошем состоянии датчика – напряжение от 1,01 до 1.02 В;
  • при удовлетворительном состоянии — от 1,02 до 1,03 В;
  • ресурс датчика заканчивается, если напряжение находится в пределах от 1,03 до 1,04 В;
  • о предсмертном состоянии говорит значение в пределах от 1.04 до 1,05, если противопоказаний нет, то можно продолжать пользоваться датчиком;
  • если напряжение превышает 1,05 В, ДМРВ требует замены.


Показания АЦП расходомера

Диагностика ДМРВ «Цешкой» не представляет ничего сложного и может быть выполнена своими руками.

Если на снятом датчике есть загрязнения, его можно почистить самому. Для его промывки можно воспользоваться WD-40. Чтобы почистить ДМРВ, нужно сначала снять с него патрубок, а потом демонтировать сам прибор. Внутри прибора находится сеточка и несколько проволок – датчиков.

На них нужно распылить чистящее средство и промыть. Затем дать высохнуть жидкости. Если грязь осталась, то процедуру следует повторить. Этим же средством нужно почистить патрубок. Он должен быть очищен от грязи и масляных пятен. Заменив воздушный фильтр, все детали нужно вернуть на место. После процедуры чистки в 80% можно восстановить работоспособность прибора, исчезает ошибка о пониженном уровне сигнала датчика (автор видео – “24 часа”).

Промывка датчика поможет избежать дорогостоящего ремонта.

Способ №6 – проверка с помощью сканера

  • Установить на телефон (смартфон), планшет или переносной компьютер программу для диагностики (например, Torque Pro, Opendiag, BMWhat, OBD Авто Доктор).
  • Подключить с помощью специального кабеля, Bluetooth-канала мобильного устройства либо ноутбук к диагностическому разъёму, расположенному на электронном блоке управления автомобиля.
  • Запустить на телефоне (смартфоне) или компьютере утилиту для диагностики.
  • Дождаться окончания сканирования программой всех узлов транспортного средства. В результате утилита проверит исправность каждого агрегата автомобиля.
  • Расшифровать коды ошибок, которые покажет программа после завершения диагностики.

Для выполнения этого метода используются тестеры:

Способ №7 – проверка Васей Диагностом

Чтобы выявить неисправность ДМРВ, не снимая его с машины, нужно:

  • Установить на портативный компьютер (ноутбук) программу под названием «ВАСЯ диагност» и запустить её.
  • Подключить адаптер к диагностическому порту автомобиля.
  • Выбрать из закладок «Блока управления» пункт «Электроника 1» или «01 – Электроника двигателя» для подключения к БУ автомобиля.
  • Зайти в «Настраиваемые группы».
  • Выбрать 211, 212 (значение по паспорту) и 213 (актуальное значение).
  • Сравнить актуальные показатели с паспортными данными. Если отклонения высокие, значит, необходимо заменить ДМРВ.

Способ №8 – с помощью мотортестера

Данный способ используется для проверки расходомеров частотного типа.

Для проверки ДМРВ мотортестером (осциллографом), необходимо подключить его к датчику (зависит от марки автомобиля) и запустить двигатель.

Параметры проверки ДМРВ:

  • время переходного процесса при включенном зажигании;
  • показания расхода воздуха на холостом ходу и резком повышении оборотов двигателя;
  • напряжение в сети датчика.

Выходные данные индивидуальны для разных типов двигателей. Перед диагностикой следует уточнить актуальные показания у официального представителя.

Какой выбрать осциллограф для диагностики авто

Рассмотрим наиболее удобные и информативные приборы.

USB Autoscope Постоловского

На первом месте в рейтинге практиков стоит осциллограф Постоловского USB Autoscope IV. Имеет обширные диагностические функции.

Преимущества

  • Профессиональные скрипты от Андрея Шульгина.
  • Удобный интерфейс.
  • Широкий диапазон измерения от 6 до 300 вольт.
  • Обработка скриптов в автоматическом режиме.
  • Информативный скрипт эффективности по цилиндрам CSS, показывающий работу форсунок, системы зажигания.
  • Тест аккумулятора, генератора, стартера. Показывает неисправности в автоматическом режиме. Легкий процесс съема характеристик: достаточно иметь доступ к плюсовой или минусовой клеммам АКБ.
  • Тест давления в цилиндре. Показывает метки системы газораспределения, правильно ли стоят фазы. Выявляет провернутый задающий диск.

Полная документация по работе с прибором. Подробно описаны скрипты, схемы подключения. Есть видео инструкция на сайте производителя. Отзывчивая поддержка.

Мотодок 3

Вторым в списке рейтинга осциллографов для диагностики автомобиля любой марки стоит Мотодок 3. Имеет схожие характеристики.

Преимущества и недостатки

  • Скрипт Андрея Шульгина эффективности цилиндров. Есть некоторые недостатки по синхронизации с некоторыми автомобилями, имеющими слабый сигнал с датчика коленчатого вала. Но это сглаживается удобством и быстрой работой.
  • Подключения на любое расстояние по кабелю RJ 45.
  • Качество картинки при диагностике, что не маловажно при работе.
  • Подробная документация на сайте производителя.

Для примера приведены только два осциллографа для диагностики авто. Существуют и другие приборы: отличаются ценой, производителем, но принцип измерения одинаков. Самое главное иметь опыт в чтении осциллограмм к каждой марке автомобиля.

Замена ДМРВ

Для замены датчика своими руками, нужно приготовить фигурную отвертку и ключ на «10».

Процедура замены состоит из следующих шагов:

  • Сначала нужно выключить зажигание, открыть капот.
  • Затем нужно отсоединить минусовую клемму на аккумуляторе.
  • На следующем этапе нужно ослабить хомут, с помощью которого гофра присоединяется к ДМРВ.
  • Далее снимаем гофру с патрубка.
  • Затем нужно отогнуть гребенку и отсоединить разъем датчика.


Отсоединение разъема датчика

  • Затем, воспользовавшись ключом на «10», нужно отвернуть крепежные болты датчика к корпусу воздухофильтра.
  • Теперь можно снять ДМРВ.
  • Установка датчика своими руками осуществляется в обратной последовательности.
  • Таким образом, если машина глохнет, имеет все признаки поломки ДМРВ, то перед тем, как начинать его ремонт, следует проверить уровень его сигнала, он не должен быть низким, выполнить полную диагностику машины и отремонтировать все неисправные узлы и детали.

    Важно регулярно проходить техосмотр авто и выполнять вовремя техническое обслуживание, тогда детали и узлы будут служить дольше.

Параллельные АЦП

Большинство высокоскоростных осциллографов и некоторые высокочастотные измерительные приборы используют параллельные АЦП из-за их высокой скорости преобразования, которая может достигать 5Г (5*109) отсчетов/сек для стандартных устройств и 20Г отсчетов/сек для оригинальных разработок. Обычно параллельные АЦП имеют разрешение до 8 разрядов, но встречаются также 10-ти разрядные версии.

Рис. 2 показывает упрощенную блок-схему 3-х разрядного параллельного АЦП (для преобразователей с большим разрешением принцип работы сохраняется). Здесь используется массив компараторов, каждый из которых сравнивает входное напряжение с индивидуальным опорным напряжением. Такое опорное напряжение для каждого компаратора формируется на встроенном прецизионном резистивном делителе. Значения опорных напряжений начинаются со значения, равного половине младшего значащего разряда (LSB), и увеличиваются при переходе к каждому следующему компаратору с шагом, равным VREF /23. В результате для 3-х разрядного АЦП требуется 23-1 или семь компараторов. А, например, для 8-разрядного параллельного АЦП потребуется уже 255 (или (28-1)) компараторов.

С увеличением входного напряжения компараторы последовательно устанавливают свои выходы в логическую единицу вместо логического нуля, начиная с компаратора, отвечающего за младший значащий разряд. Можно представить преобразователь как ртутный термометр: с ростом температуры столбик ртути поднимается. На рис. 2 входное напряжение попадает в интервал между V3 и V4, таким образом 4 нижних компаратора имеют на выходе “1”, а верхние три компаратора – “0”. Дешифратор преобразует (23-1) – разрядное цифровое слово с выходов компараторов в двоичный 3-х разрядный код.

Параллельные АЦП – достаточно быстрые устройства, но они имеют свои недостатки. Из-за необходимости использовать большое количество компараторов параллельные АЦП потребляют значительную мощность, и их нецелесообразно использовать в приложениях с батарейным питанием.

Особенности, диагностика и замена элементов систем впрыска на ВАЗовских авто

Ниже рассмотрим основные контроллеры!

Холла

Есть несколько вариантов, как можно проверить датчик Холла ВАЗ:

  1. Использовать заведомо рабочее устройство для диагностики и установить его вместо штатного. Если после замены проблемы в работе двигателя прекратились, это говорит о неисправности регулятора.
  2. С помощью тестера произвести диагностику напряжения контроллера на его выводах. При нормальной работоспособности устройства напряжение должно составить от 0.4 до 11 вольт.

Процедура замены выполняется следующим образом (процесс описан на примере модели 2107):

  1. Сначала производится демонтаж распределительного устройства, выкручивается его крышка.
  2. Затем осуществляется демонтаж бегунка, для этого его надо потянуть немного вверх.
  3. Демонтируйте крышка и выкручивается болт, который фиксирует штекер.
  4. Также надо будет выкрутить болты, которые фиксируют пластину контроллера. После этого откручиваются винты, которые крепят вакуум-корректор.
  5. Далее, осуществляется демонтаж стопорного кольца, извлекается тяга вместе с самим корректором.
  6. Для отсоединения проводов необходимо будет раздвинуть зажимы.
  7. Вытаскивается опорная пластина, после чего откручиваются несколько болтов и производителя демонтаж контроллера. Производится монтаж нового контроллера, сборка осуществляется в обратной последовательности (автор видео — Андрей Грязнов).

Скорости

О выходе из строя данного регулятора могут сообщить такие симптомы:

  • на холостом ходу обороты силового агрегата плавают, если водитель не жмет на газ, это может привесит к произвольному отключению мотора;
  • показания стрелки спидометра плавают, устройство может в целом не работать;
  • увеличился расход горючего;
  • мощность силового агрегата снизилась.

Сам контроллер расположен на коробке передач . Для его замены нужно будет только поднять колесо на домкрат, отсоединить провода питания и демонтировать регулятор.

Уровня топлива

Датчик уровня топлива ВАЗ или ДУТ используется для обозначения оставшегося объема бензина в топливном баке. Причем сам датчик уровня топлива установлен в одном корпусе с бензонасосом. При его неисправности показания на приборной панели могут быть неточными.

Замена делается так (на примере модели 2110):

  1. Отключается аккумулятор, снимается заднее сиденье автомобиля. С помощью крестообразной отвертки выкручиваются болты, которые фиксируют люк бензонасоса, снимается крышка.
  2. После этого от разъема отсоединяются все подводящие к нему провода. Также необходимо отсоединить и все патрубки, которые подводятся к топливному насосу.
  3. Затем откручиваются гайки, фиксирующие прижимное кольцо. Если гайки заржавели, перед откручиванием обработайте их жидкостью WD-40.
  4. Сделав это, выкрутите болты, которые фиксируют непосредственно сам датчик уровня топлива. Из кожуха насоса вытаскиваются направляющие, а крепления при этом нужно отогнуть отверткой.
  5. На завершающем этапе производится демонтаж крышки, после этого вы сможете получить доступ к ДУТ. Контроллер меняется, сборка насоса и остальных элементов осуществляется в обратном снятию порядке.

Фотогалерея «Меняем ДУТ своими руками»

Холостого хода

Если датчик холостого хода на ВАЗ выходит из строя, это чревато такими проблемами:

  • плавающие обороты, в частности, при включении дополнительных потребителей напряжения — оптики, отопителя, аудиосистемы и т.д.;
  • двигатель начнет троить;
  • при активации центральной передачи мотор может заглохнуть;
  • в некоторых случаях выход из строя РХХ может привести к вибрациям кузова;
  • появление на приборной панели индикатора Check, однако загорается он не во всех случаях.

Взаимозаменяемость

Данный вопрос довольно актуален, особенно принимая во внимание стоимость оригинальных изделий импортного автопрома. Но здесь не все так просто, приведем пример. В первых серийных моделях горьковского автозавода на инжекторные волги устанавливался ДМРВ БОШ (Bosh). Несколько позже импортные датчики и контролеры заменили отечественные изделия.


А –импортный нитевой ДМРВ производства Bosh (pbt-gf30) и его отечественные аналоги В — АОКБ «Импульс» и С – АПЗ

Конструктивно эти изделия практически не отличались за исключением нескольких конструктивных особенностей, а именно:

  • Диаметр провода, используемого в проволочном терморезисторе. У бошевских изделий Ø 0,07 мм, а у отечественной продукции – Ø0,10 мм.
  • Способ крепления провода, он отличается типом сварки. У импортных датчиков это контактная сварка, у отечественных изделий – лазерная.
  • Форма нитевого терморезистора. У Bosh он имеет П-образную геометрию, АПЗ выпускает приборы с V-образной нитью, изделия АОКБ «Импульс» отличаются квадратной формой подвески нити.

Все приведенные в качестве примера датчики были взаимозаменяемые, пока Горьковский автозавод не перешел на пленочные аналоги. Причины перехода были описаны выше.


Пленочный ДМРВ Сименс (Simens) для ГАЗ 31105

Приводить отечественный аналог изображенному на рисунке датчику не имеет смысла, поскольку внешне он практически не отличается.

Следует отметить, что при переходе с нитевых приборов на пленочные, скорее всего, потребуется менять всю систему, а именно: сам датчик, соединительный провод от него к ЭБУ, и, собственно сам контролер. В некоторых случаях контроль может быть адаптирован (перепрошит) под работу с другим датчиком. Такая проблема связана с тем, что большинство нитевых расходомеров посылают аналоговые сигналы, а пленочные – цифровые.

Следует отметить, что на первые серийные автомобили ВАЗ с инжекторным двигателем устанавливался нитевой ДМРВ (производства GM) с цифровым выходом, в качестве примера можно привести модели 2107, 2109, 2110 и т.д. Сейчас в них устанавливается ДМРВ БОШ 0 280 218 004.

Для подбора аналогов можно воспользоваться информацией с официальных источников, или тематических форумов. Для примера ниже представлена таблица взаимозаменяемости ДМРВ для автомобилей ВАЗ.


Таблица совместимости ДМРВ для модельного ряда ВАЗ

Представленная таблица наглядно показывает, что, например, датчик ДМРВ 0-280-218-116 совместим с двигателями ВАЗ 21124 и 21214, но не подходит к 2114, 2112 (в том числе и на 16 клапанов). Соответственно можно найти информацию и по другим моделям ВАЗ (например, Лада Гранта, Калина, Приора, 21099, 2115, Нива Шевроле и т.д.).

Как правило, не возникнет проблем и с другими марками авто отечественного или совместного производства (УАЗ Патриот ЗМЗ 409, ДЭУ Ланос или Нексия), подобрать замену ДМРВ для них не составит проблемы, это же касается и изделий китайского автопрома (КIA Ceed, Спектра, Спортейдж и т.д.). Но в этом случае велика вероятность, что распиновка ДМРВ может не совпадать, исправить ситуацию поможет паяльник.

Значительно сложнее обстоит дело с европейскими, американскими и японскими авто. Поэтому, если у вас Тойота, Фольксваген Пассат, Субару, Мерседес, Форд Фокус, Нисан Премьера Р12, Рено Меган или другое европейское, американское или японское авто, прежде, чем производить замену ДМРВ, необходимо тщательно взвесить все варианты решения.

Если интересно, можете поискать в сети эпопею с попыткой замены на Ниссане Альмера Н16 «родного» воздухомера аналогом. Одна из попыток привела к чрезмерному расходу топлива даже на холостом ходу.

В некоторых случаях поиск аналого будет оправданным, особенно, если принять во внимание стоимость «родного» волюметра (в качестве примера можно привести БМВ Е160 или Ниссан Х-Трейл Т30).

АЦП с параллельным преобразованием входного аналогового сигнала

По параллельному методу входное напряжение одновременно сравниваются с n опорными напряжениями и определяют, между какими двумя опорными напряжениями оно лежит. При этом результат получают быстро, но схема оказывается достаточно сложной.

Принцип действия АЦП (рис. 3.93)

При Uвх = 0, поскольку для всех ОУ разность напряжений (U+ − U−) < 0 (U+, U− — напряжения относительно общей точки соответственно неинвертирующего и инвертирующего входа), напряжения на выходе всех ОУ равны −Епит а на выходах кодирующего преобразователя (КП) Z0, Z1, Z2 устанавливаются нули. Если Uвх > 0,5U, но меньше 3/2U, лишь для нижнего ОУ (U+ − U−) > 0 и лишь на его выходе появляется напряжение +Епит, что приводит к появлению на выходах КП следующих сигналов: Z0 = 1, Z2 = Zl = 0. Если Uвх > 3/2U, но меньше 5/2U, то на выходе двух нижних ОУ появляется напряжение +Епит, что приводит к появлению на выходах КП кода 010 и т. д.

Посмотрите интересное видео о работе АЦП:

Как обманывают ДМРВ с помощью прошивки ЭБУ

Предыдущий способ хорош тем, что для его реализации не требуется сложного оборудования и кропотливой работы. Если вы смогли проверить мультиметром напряжение на выходе расходомера (значит, он у вас как минимум есть), и умеете держать в руках паяльник, установить резистор в разрыв провода не составит труда. Однако зависимость напряжения от массы воздушного потока нелинейная. И при открытии дроссельной заслонки, погрешность сигнала, скорректированного резистором в состоянии покоя, будет расти. Соответственно, топливно-воздушная смесь не будет идеальной.

Значит надо скорректировать тарировку ДМРВ в прошивке ЭБУ.

Внимание! Если у вас нет опыта работы с программным обеспечением автомобиля, лучше доверить эту операцию профессионалам.

  • Устанавливаем на ноутбук специализированную тюнинг программу «ДМРВ Корректор».
  • Подключаем автомобильный сканер к разъему OBD-II, устанавливаем связь между ЭБУ и компьютером.

    Важно! Во время операций с прошивкой контроллера ЭБУ не должно пропасть питание 12 вольт. Поэтому надо убедиться в полноценном заряде аккумулятора.

  • Корректируем напряжение АЦП ДМРВ в состоянии покоя (масса воздуха 0 кг/час) до требуемых 1 В.

  • Сохраняем изменения прошивки.

После проведенной тарировки, данные о массовом расходе воздуха будут корректными во всем диапазоне оборотов двигателя.

Внимание: После того, как вы все-таки установите новый расходомер, необходимо вернуть тарировку в заводское (штатное) состояние.

Это интересно: Какой зазор должен быть на Хендай Солярис на свечах зажигания

Характеристики АЦП

АЦП бывают разные, с разными характеристиками. Основная характеристика – это разрядность. Однако есть и другие. Например, вид аналогового сигнала, который можно подключать к входу АЦП.

Все эти характеристики описаны в документации на АЦП (если он выполнен в виде отдельной микросхемы) или в документации на микроконтроллер (если АЦП встроен в микроконтроллер).

Кроме разрядности, о которой мы уже говорили, можно назвать ещё несколько основных характеристик.

Least significant bit (LSB) – младший значащий разряд (МЗР). Это наименьшее входное напряжение, которое может быть измерено АЦП. Определяется по формуле:

1 LSB = Uоп / 2Р

Где Uоп – это опорное напряжение (указывается в характеристиках АЦП). Например, при опорном напряжении 1 В и разрядности 8 бит, получим:

1 LSB = 1 / 28 = 1 / 256 = 0,004 В

Integral Non-linearity – интегральная нелинейность выходного кода АЦП. Понятно, что любое преобразование вносит искажения. И эта характеристика определяет нелинейность выходного значения, то есть отклонение выходного значения АЦП от идеального линейного значения. Измеряется эта характеристика в LSB.

Иными словами, эта характеристика определяет, насколько “кривой” может быть линия на графике выходного сигнала, которая в идеале должна быть прямой (см. рис.).

Абсолютная точность. Также измеряется в LSB. Иными словами, это погрешность измерения. Например, если эта характеристика равна +/- 2 LSB, а LSB = 0,05 В, то это означает, что погрешность измерений может достигать +/- 2*0,05 = +/- 0,1В.

Есть у АЦП и другие характеристики. Но для начала и этого более чем достаточно.

Описание регистров ADS1115

АЦП имеет всего 4 внутренних регистра, все регистры 16-ти битные, соответственно для каждой сессии записи/чтения по интерфейсу I2C передается 2 информационных байта (кроме байта адреса регистра). Описание регистров приведено ниже в таблице:

АдресНазваниеОписание регистра
0x00Conversion registerРегистр хранения результата преобразования
0x01Config registerКонфигурационный регистр
0x02Lo_thresh registerРегистр уставки, минимальное значение
0x03Hi_thresh registerРегистр уставки, максимальное значение

С помощью конфигурационного регистра осуществляется управление АЦП, описание регистра приведено ниже в таблице:

БитНазвание битаЗначение битаОписание
15OS. Бит определяет состояние устройства и может быть записан только в режиме пониженного потребленияДля записи
0Нет эффекта
1Начать преобразование, для режима одиночного преобразования (пониженное потребление)
Для чтения
0Выполняется преобразование
1Преобразование закончено
14-12MUX. Настройка мультиплексора000AINp=AIN0 и AINn=AIN1 (умолч)
001AINp=AIN0 и AINn=AIN3
010AINp=AIN1 и AINn=AIN3
011AINp=AIN2 и AINn=AIN3
100AINp=AIN0 и AINn=GND
101AINp=AIN1 и AINn=GND
110AINp=AIN2 и AINn=GND
111AINp=AIN3 и AINn=GND
11-9PGA. Коэффициент усиления усилителя000FS=±6,144 В
001FS=±4,096 В
010FS=±2,048 В (умолч.)
011FS=±1,024 В
100FS=±0,512 В
101FS =±0,256 В
110FS =±0,256 В
111FS =±0,256 В
8MODE. Режим работы0Непрерывное преобразование
1Одиночное преобразование, режим пониженного потребления (умолч)
7-5DR. Частота дискретизации0008 ГЦ
00116 ГЦ
01032 ГЦ
01164 ГЦ
100128 ГЦ (умолч)
101250 ГЦ
110475 ГЦ
111860 ГЦ
4COMP_MODE. Тип компаратора0Компаратор с гистерезисом (умолч)
1Компаратор без гистерезиса
3COMP_POL. Полярность компаратора0Низкий активный уровень (умолч)
1Высокий активный уровень
2COMP_LAT. Режим компаратора0Компаратор без “защелки” (умолч)
1Компаратор с “защелкой”
1-0COMP_QUE. Управление компаратором00Установка сигнала на выходе после одного преобразования
01Установка сигнала на выходе после двух преобразований
10Установка сигнала на выходе после четырех преобразований
11Компаратор выключен (умолч)

Параметры ацп датчиков ваз

  • Регистрация
  • Вход
  • В начало форума
  • Правила форума
  • Старый дизайн
  • FAQ
  • Поиск
  • Пользователи

Извините может за глупые вопросы

я так понимаю,это обжимка масс датчиков,находится в 20см от разъема ЭБУ?

А вот «провод из ЭБУ до 3-го контакта ДМРВ»

на диагнозе и по тестеру(3-ий и 5-ый контакт ДМРВ) 0,996

При езде на малом дросселе,при сбросе газа,езде на ХХ и при переключениях дергается.Вроде как симптомы ДМРВ

Термин: АЦП

Аналого-цифровой преобразователь (АЦП, Analog-to-digital converter, ADC) — устройство, преобразующее входной аналоговый сигнал в цифровой сигнал (в цифровой двоичный код). Для задач измерения значения сигнала в произвольный момент времени используют асинхронный режим работы с АЦП с жестко не привязанными по времени одиночными аналого-цифровыми преобразованиями. Для задач измерения функциональной зависимости изменения аналогового сигнала используют синхронный режим работы АЦП. Синхронный режим работы АЦП без пропусков данных на сколь угодно большом интервале времени называют также потоковым режимом. Синхронные АЦП, как правило, поддерживают покадровый принцип сбора данных, когда оцифрованные отчёты измерения образуют условные кадры с заданным количеством отсчётов, соответствующих заданным каналам измерения.

АЦП является неотъемлемой частью системы сбора данных.

Основные параметры АЦП:

  • Входной диапазон сигнала (диапазон измерения).
  • Частота преобразования [Гц] – частота следования аналого-цифровых преобразований. В терминологии ЦОС частота преобразования АЦП называется частотой дискретизации сигнала в его цифровом представлении.
  • Период преобразования [c] = [1/Гц] – величина, обратная частоте преобразования. В терминологии ЦОС период преобразования АЦП является периодом преобразования сигнала в его цифровом представлении. Для асинхронных АЦП нормируется время преобразования.
  • Полоса частот пропускания АЦП [Гц]…[Гц]. Это диапазон частот сигнала, который пропускает преобразователь по уровню сигнала -3 дБ.
  • Разрядность АЦП – количество N двоичных разрядов преобразователя, при этом количество уровней квантования сигнала в цифровом представлении АЦП равно 2N.
  • Соотношение сигнал/шум канала преобразования АЦП [дБ]
  • Технология АЦП. Типичные представители: АЦП последовательного приближения, сигма-дельта АЦП.
  • Межканальное прохождение [дБ].

Верхняя частота полосы частот пропускания АЦП последовательного приближения может быть значительно больше частоты преобразования АЦП, а верхняя частота полосы частот пропускания сигма-дельта АЦП не превышает половины частота преобразования АЦП.

АЦП различаются типами входов. Чаще встречаются АЦП с входом напряжения, реже – с входом тока или входом заряда.

Многоканальные АЦП строятся по принципу независимых параллельных каналов АЦП или по принципу АЦП с коммутацией каналов.

АЦП с коммутацией каналов разделяются на АЦП с входным коммутатором каналов (у которых коммутационный процесс происходит непосредственно в измерительной цепи) и на АЦП с внутренним коммутатором, например, как у E20-10 (у которых коммутационный процесс происходит внутри и измерительную цепь не затрагивает).

Важной характеристикой АЦП является наличие гальванической изоляции входной сигнальной цепи. Для АЦП с входом напряжения важной характеристикой является тип входа напряжения: дифференциальный вход, вход с общей землёй.

По потребительским свойствам все АЦП можно разделить на АЦП общего применения и специализированные АЦП. Для общего применения больше всего подходят АЦП, имеющие дифференциальные входы напряжения и гальваноразвязку (LTR11, LTR24-1). К специализированным АЦП можно отнести преобразователи, имеющие специальный вход специфического датчика (например, тензометрического – LTR212, LTR216, или ICP-датчика – LTR25), либо предназначенные для выполнения специальных функций (например, измерение частоты – LTR51). В то же время, у АЦП общего применения могут присутствовать специализированные режимы (каналы) измерения (например, измерение сопротивления модулем LTR114).

В особую группу можно выделить АЦП на основе преобразователей «напряжение-частота» для измерения постоянного или медленно меняющегося напряжения или тока (например, H-27x).

Каналы АЦП, дополненные интерфейсом с ПК, входят в состав систем сбора данных – примеры характерных реализаций были упомянуты выше.

( 2 оценки, среднее 4.5 из 5 )

Что такое частота выборки?

Скорость, с которой преобразуются сигналы, называется частотой выборки. Некоторые области применения, такие как большинство измерений температуры, не требуют высокой скорости, поскольку сигналы изменяются не очень быстро.

Однако при анализе напряжения и силы переменного тока, ударов и вибрации, а также во многих других сферах применения требуются частоты выборки, составляющие десятки или сотни тысяч выборок в секунду и более. Частота выборки обычно называется осью измерения T (или X).

Аналоговый сигнал, регистрируемый АЦП

Компания Dewesoft предлагает системы сбора данных с максимальными частотами выборки, как показано ниже:

МодельВариантИнтерфейсМакс. частота выборки (на канал)
SIRIUSDual CoreUSB200 квыб./с
SIRIUS MINIDual CoreUSB200 квыб./с
SIRIUSDual CoreEtherCAT20 квыб./с
SIRIUSHD (высокая плотность)USB200 квыб./с
SIRIUSHD (высокая плотность)EtherCAT10 квыб./с
SIRIUSHS (высокая скорость)USB1 Мвыб./с
DEWE-43AСтандартн.USB200 квыб./с
KRYPTONМногоканальныйEtherCAT20 квыб./с
KRYPTONОдноканальныйEtherCAT40 квыб./с
IOLITEСтандартн.EtherCAT20 квыб./с

Микроконтроллер C8051F064

Кристалл C8051F064 представляет собой скоростной 8-разрядный микроконтроллер для совместной обработки аналоговых и цифровых сигналов с двумя интегрированными 16-разрядными АЦП последовательных приближений. Встроенные АЦП могут работать в однопроводном и дифференциальном режимах при максимальной производительности до 1М отсчетов/сек. На рис. 17 приведены основные характеристики АЦП микроконтроллера C8051F064. Для самостоятельной оценки возможностей C8051F064 по цифровой и аналоговой обработке данных можно воспользоваться недорогим оценочным комплектом C8051F064EK (рис. 18). Комплект содержит оценочную плату на базе C8051F064, USB-кабель, документацию, а также программное обеспечение для тестирования аналоговых динамических и статических характеристик интегрированного высокоточного 16-разрядного АЦП.
VDD= 3.0 V, AV+ = 3.0 V, AVDD = 3.0 V, VREF = 2.50 V (REFBE=0), -40 to +85°, если не указано иначе

ПараметрыУсловияМин.ТипичноеМакс.Единицы измерения
Характеристики на постоянном токе
Разрядность16бит
Интегральная нелинейностьОднопроводный±0.75±2LSB
Однопроводный±0.5±1LSB
Дифференциальная нелинейностьГарантированная монотонность±+0.5LSB
Аддитивная погрешность (смещение)0.1мВ
Мультипликативная погрешность0.008% F.S.
Температурный коэффициент усиления0.5ppm/°C
Динамические характеристики (Частота дискретизации 1 Msps, AVDD, AV+ = 3.3 В)
Сигнал/шум и искаженияFin = 10 кГц, однопроводный86дБ
Fin = 100 кГц, однопроводный84дБ
Fin = 10 кГц, дифференциальный89дБ
Fin = 100 кГц, дифференциальный88дБ
Общие гармонические искаженияFin = 10 кГц, однопроводный96дБ
Fin = 100 кГц, однопроводный84дБ
Fin = 10 кГц, дифференциальный103дБ
Fin = 100 кГц, дифференциальный93дБ
Динамический диапазон, свободный от гармоникFin = 10 кГц, однопроводный97дБ
Fin = 100 кГц, однопроводный88дБ
Fin = 10 кГц, дифференциальный104дБ
Fin = 100 кГц, дифференциальный99дБ

Cписок литературы.

  1. https://www.wbc-europe.com/en/services/pim_application_guide.html
  2. www.silabs.com
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]